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1 Introduction and Motivation

1.1 Biological Background

In 1952, Alan Turing published his highly influential work The Chemical
Basis of Morphogenesis,1 which changed our understanding of theoretical
biology. Turing discussed how biological patterns can arise from chemical
disturbances in biological homogeneous systems. He states that phenomena
such as skin pigmentation patterns can be explained by chemical reaction-
diffusion systems occurring as early as the embryonic stage of development.

Without disturbances in a spatially homogeneous reaction-diffusion sys-
tem, there can be no deviation from the uniform sphere. While this describes
many organisms very early in development, deviations from homogeneity are
needed to spark morphogenesis and form organs, limbs, and eventually, skin
patterns. Turing noted that these disturbances can be described as unstable
equilibria; a small deviation from the homogeneous state will interrupt the
system from developing uniformly. He also noted that such equilibria are not
observed to exist per se in nature, but rather occur when the disturbance in
a systems causes a stable equilibrium to become unstable. This phenomenon
is known as a Turing Instability, and is observed in mathematical systems
with the addition of a diffusion term.

Several notable works have since adapted and expanded Turing’s model.2 3 4

This paper will investigate one such model, proposed by Schnakenberg in his
1979 work Simple Chemical Reaction Systems With Limit Cycle Behavior.5

The Schnakenberg model, also known as the activator-depletion model, is
characterized by the kinetics of two reacting morphogens exhibiting auto-
catalytic behavior.

We will apply Turing’s theory and Schnakenberg’s model to branch pat-
terning in the developing lung. Current biological research has not revealed
the deciding factors in branching morphogenesis that determine branch type,
location, and orientation.6 However, we do know that two gene proteins, Fi-
broblast Growth Factor 10 (FGF10) and Sonic Hedgehog (SHH), are crucial
to lung development.7 FGF10 stimulates tissue growth, while SHH inhibits
it. One theory proposes that branching patterns occur from the genetic ex-
pression of FGF10 and SHH outside the lung, in a fluid-filled region called
the mesenchyme.8 These expressions can theoretically form concentration
patterns on the lung surface and diffuse inward, thus determining branching
morphogenesis.
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An analysis of the Schnakenberg model in this context may give insight
into genes interact during development, and could lead to several medical
applications. I will examine this model on the surface of a sphere, and offer
an analytic solution. This analysis will first provide a few key definitions and
models that will be referenced throughout the paper, then perform a stability
analysis when there is no diffusion. We can then include the diffusion terms
along with a small perturbation from the fixed points, and determine which
parameters give rise to instabilities in this context. In theory, substituting
these parameters into the model and then solving on some n-dimensional
geometry will result in regions of concentrated substrates. The goal of this
paper is to establish a foundation for future work on lung branching mor-
phogenesis.

1.2 Turing’s Classic Reaction-Diffusion Model

The original basis for Turing’s model is the interaction of two substances
that undergo chemical reactions and spatial diffusion. This classic reaction-
diffusion system has the general form:

u̇ = Du∆u+

reaction︷ ︸︸ ︷
f(u, v)

v̇ = Dv∆v︸ ︷︷ ︸
diffusion

+g(u, v)
(1)

Both u and v are functions of position and time. Also, f(u, v) and g(u, v)
describe the concentration of the reactants, as well as the rates of produc-
tion and degradation of the products. The ∆ terms represent the diffusion
behavior in the system, with diffusion rates Du and Dv.

1.3 Schnakenberg’s Activator-Depleated Substrate Model

Let us consider Schnakenberg’s approach. He considered the kinetics of
a tri-molecular reaction, given by:

X
k1−−⇀↽−−
k2

F 2F + S
k3−−→ 3 F Y

k4−−→ S

Here, F represents the activator FGF10, and S represents the inhibitor SHH.
X and Y are their respective precursor substrates. Using the law of mass
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action, this series of reactions is represented by Equation (2) below. Let
the function F (ρ, φ, θ, t) designate the behavior of FGF10, while S(ρ, φ, θ, t)
applies to SHH. This model is then given by:

Ḟ = DF∆F + k1 − k2F + k3F
2S

Ṡ = DS∆S + k4 − k3F
2S

(2)

All parameters are positive and real. Initial amounts of FGF10 and SHH
are given by k1 and k4, respectively. The activator FGF10 is created auto-
catalytically, represented by the terms k3F

2S (positive auto-catalysis with
SHH) and k2F (negative auto-catalysis with the precursor substrate). The
k3F

2S term subtracted from the inhibitor equation for SHH, since the SHH
decreases in concentration as FGF10 is produced during the k3 reaction. The
two morphogens form a feedback loop that ensures a cyclic production and
degradation of each substance when in the steady-state. Like the classic
Turing model, the diffusion of the substances in the domain is given by the
Laplacian terms in each equation, with diffusion rates DF and DS.

1.4 The Laplace-Beltrami Operator

Since this project is only examining the surface of a sphere, Laplace op-
erator in Schnakenberg’s model will be replaced with the Laplace-Beltrami
operator. There are a few groups that have already sucessfully investigated
this method of solving a Turing model on surface geometries.9 10 11

Let Ω be an open subset in R3 and Γ be a hypersurface contained in Ω.
The Laplace-Beltrami operator is given by:

∆Γu = ∇Γ · ∇Γu with

∇Γu = ∇u− (∇u · ~n)~n

(3)

Here, ∇Γu is the tangential gradient, and ~n is the normal unit vector. We can
see that the surface Laplacian is the divergence of the tangential gradient.
This operation is readily done in spherical coordinates, as it simply eliminates
the dependence on the radius.
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2 Stability Without Diffusion

2.1 Nondimensionalization

To more easily perform this analysis, we can begin by nondimensionalizing
the parameters and replacing the diffusion terms with the surface Laplacian.
Referencing equation (2), we can use the following substitutions:

F = F̃Fa S = S̃Sa ~x = x̂xa t = τta ∆→ ∆Γ

This results in the following equation, where the time derivative is taken with
respect to τ :

˙̃F =
DF ta
x2
a

∆ΓF̃ +
k1ta
Fa
− k2taF̃ + k3FaSataF̃

2S̃

˙̃S =
DSta
x2
a

∆ΓS̃ +
k4ta
Sa
− k3F

2
a taF̃

2S̃

We can then make substitutions for each term, and define some new ones:

Fa =

√
k2

k3

Sa =

√
k2

k3

x2
a =

DF

k2

ta =
1

k2

and α =
k1

k2

√
k3

k2

β =
k4

k2

√
k3

k2

δ =
DS

DF

γ =
1

k2

This gives us the simplified system:

˙̃F = ∆ΓF̃ + f(F̃ , S̃) with f(F̃ , S̃) = γ
(
α− F̃ + F̃ 2S̃

)
˙̃S = δ∆ΓS̃ + s(F̃ , S̃) with s(F̃ , S̃) = γ

(
β − F̃ 2S̃

) (4)

We now have scaled equations, and although the γ term could have been
excluded, it is useful as a scaling measure of the general strength of the
reactions. For now, it is sufficient to note that the auto-catalytic terms are
otherwise coefficient-less, and the rates of production and degradation of the
morphogens rely on the initial concentration values of α and β.
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2.2 Fixed Points and Stability

We can see from Equation (4) that the system relies on parameters α and
β to determine stability regions. We can find these regions by first removing
the diffusion terms, then revealing the fixed points of the system, which are
the solutions to the equations:

α− F̃ + F̃ 2S̃ = 0 and β − F̃ 2S̃ = 0.

This system has a fixed point at (F ∗, S∗) = (α + β, β
(α+β)2

). To determine
the region of stability about these fixed points, we first perturb the system
by some small |ε| << 1.

F = F ∗ + ε F̃ −→ ˙̃F = ε F̃t = γ f(F ∗ + ε F̃ )

S = S∗ + ε S̃ −→ ˙̃S = ε S̃t = γ s(S∗ + ε S̃)

Next, a Taylor expansion about the fixed point yields:(
F̃t

S̃t

)
= γ

(
fF (F ∗, S∗) fS(F ∗, S∗)

sF (F ∗, S∗) sS(F ∗, S∗)

)
·

(
F̃

S̃

)
+O(ε2) (5)

Or more simply, without higher order terms:

Ẇ = γJW (6)

Before plugging in the partial derivatives and parameters into J , there are
some useful generalizations to highlight. Solving the linear equation det(J −
λI) will reveal the necessary constraints for stability:

det

(
fF − λ fS
sF sS − λ

)
= 0 −→ λ2 − λtr(J) + det(J) = 0

It is assumed that the partial derivatives of f and s are evaluated at the fixed
point. The the solution is:

λ =
tr(J)±

√
tr(J)2 − 4 det(J)

2
(7)
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Since stability is desired, we have constraints on the values for tr(J) and
det(J). This requires re(λ) < 0, which implies tr(J) < 0 and det(J) > 0.
These constraints are satisfied when:

fF + sS < 0 and ffss − fssF > 0 (8)

Now it is useful to fill in the partial derivative and parameter values. The
Jacobian is therefore:

J =

(
− 1 + 2FS F 2

− 2FS − F 2

)∣∣∣∣∣
(F ∗, S∗)

=

−1 +
2β

α + β
(α + β)2

− 2β

α + β
− (α + β)2

 (9)

This defines the constraints as:

β − α < (α + β)3 and (α + β)2 > 0 (10)

The second constraint is already fulfilled for all real values of α and β. Now
we have a starting point for the Turing Instability region.

2.3 Bifurcation and Stable Regions

The constraints given in (10) provide the necessary criteria for a stable
region. We can visualize this stable region by noting that its border is defined
by a Hopf bifurcation at tr(J)=0. Figure (1) below shows a visualization of
stable and unstable regions in terms of α and β. We can see that a rough
generalization for a stability region is given by:

α >
1

3
√

3
and β ≥ 1

The phase plane in Figures (2) and (3) verify that the fixed point is stable for
the parameter values (β, α) = (0.2, 1.2) in the desired region, and unstable
for the pair (0.05, 0.7) outside that region. We will discuss the parameter
dynamics more fully in Section 3.1.
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Figure 1: Stability region for parameters α and β.

Figure 2: Phase plane when α = 0.2 and β = 1.2.
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Figure 3: Phase plane when α = 0.05 and β = 0.7.

3 Turing Instability Regions

3.1 Instability with Diffusion

The Hopf bifurcation will be used as a threshold for the Turing instability.
The system is stable for β − α < (α + β)3, so it is necessary find the region
fitting this constraint where the activator-depletion system with its diffusion
terms is unstable. To examine the system with the diffusion terms, Equation
(6) is revisited. Without diffusion, there was Ẇ = γ JW . With diffusion,
there is:

Ẇ = D∆ΓW + γ JW with D =

(
1 0
0 δ

)
(11)

To turn this into a linear system, we can define the following eigenvalue
problems to use as substitutes into Equation (11):

Ẇ = λW and ∆ΓW = −k2W (12)
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Here, we need k 6= 0, for diffusion to affect the model. We are concerned
with finding constraints on the eigenvalues in λ. In Section (3.3), we will
solve these definitions analytically. For now, it is necessary to examine the
linear system:

λW = −Dk2W + γJW (13)

Once the characteristic equation for λ is found, it will provide constraints
on the parameters α, β, γ, and δ that will ensure instability, and thus re-
veal the Turing region. Instability without diffusion required the eigenvalues
produced by the Jacobian matrix be negative. With diffusion, the goal is to
find at least 1 positive eigenvalue. The characteristic equation is found in
the same way as seen in Section (2.2):

det(−Dk2 + γ J − λI) = 0 −→ det(X − λI) = 0 −→

det

[(
−k2 + γfF γfS

γsF −δk2 + γsS

)
− λI

]
= 0 (14)

Here, ff , fS, sF , and sS are assumed to be evaluated at the fixed point
(F ∗, S∗). Now we can utilize the equation λ2−λtr(X)+det(X) = 0, yielding:

λ2 − λ[γ (fF + sS)− k2(1 + δ)] + det(X) = 0

Where det(X) = δk4 − γ(δfF + sS)k2 + γ2(fF ss − fssF )
(15)

A value satisfying det(X) < 0 is desired, because it will ensure that the fixed
point becomes an unstable saddle node. Alternatively, we could constrain
tr(X) > 0 to ensure instability, however we have already established that
fF +sS < 0 (8). Thus tr(X) < 0, and we must focus on the parameter values
that satisfy det(X) < 0.

We can examine each term in det(X) to determine the deciding factors
for instability. We know that δk4 must always be positive, since δ > 0.
Also, since γ2(fF sS − fSsF ) is equal to γ2det(J), it must be positive, as this
was a constraint established on the system without diffusion. The coefficient
of interest is γ(δfF + sS)k2, which must be positive for det(X) < 0. We
already know that fF + sS < 0 (8) and sS < 0 (9). Constraining fF to
be positive, we can change the sign of this term. This requires α < β and
δ(β−α) > (α+β)3, although this will not be sufficient to fulfill all the needed
constraints. In addition, we must make this term large enough to shadow its
positive neighbors, so we need δ > δc for some critical value δc > 1. This
critical value is found by solving det(X)=0.
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We now know that for instability to occur, we need to find the threshold
for δ that makes the γ coefficient term in det(X) larger that the other two
terms, as well as restrict the parameters α and β so that fF is positive.
This constraint is apparent when examining the form of (7), as a negative
value for the determinant ensures one eigenvalue will be positive and one will
be negative. The threshold for δc can be found by taking the derivative of
det(X) with respect to k2, and examining the region where the minimum is
negative.

2δck
2 − γ(δcfF + sS) = 0 −→ k2 = γ

δcfF + sS
2δc

(16)

Next, we plug this value into det(X)=0 and solve for δc:

4δc(fF sS − fSsF )− (δcfF + sS)2 = 0 −→(
δc(β − α)− (α + β)3

)2

= 4δc(a+ b)4
(17)

These parameter constraints describe Turing regions in terms of α, β, and δ.
They also provide a minimum delta value, specifically:

δc =
(α + β)2

β − α

(
α + 3β −

√
(α + 3β)2 − 4(β − α)

)
(18)

The wave number k2 is also critical. Variations can effect the instabil-
ity that depends on det(X) < 0. The critical values of k are found when
det(X) = 0, as in (15). Since det(X) is degree 2 polynomial with respect
to k2, we can apply the quadratic formula to find the critical wave numbers.
This yields:

k =
γ

2δ

(
(δfF + sS)±

√
(δfF + sS)2 − 4δ(fF sS − fSsF )

)
(19)

=
γ

2δ

δ(β − α
α + β

)
− (α + β)2 ±

√
δ2

(
β − α
α + β

− (α + β)2

)2

− 4δ(α + β)2


We then have kmin < k < kmax. More about the wave number will be
discussed in Section 3.3.
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3.2 Parameter Values Summary

There are now multiple constraints on α, β, and δ that define the Turing
instability region. These are summarized in Table (1) below. We can also
visualize these regions for various values of δ, as shown in Figure (4). The
blue area is a Turing Instability Region. Notice that the region grows for
increasing δ, and for δ >> 1, the slope at the origin tends toward α = β.

Generic Constraint Parameter Constraint
fF + ss < 0 β − α < (α + β)3

δfF + sS > 0 α < β and δ(β − α) > (α + β)3

4δc(fF sS − fSsF )− (δcfF + sS)2 > 0
(
δ(β − α)− (α + β)3

)2
> 4δ(a+ b)4

Table 1: Parameter Constraints for Turing Instability

Figure 4: Instability region for varying δ.
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3.3 Analytic Solution

Having established several parameter constraints, we can now solve the
eigenvalue problems stated in (12). Since the domain is the surface of a
sphere, the following boundary conditions and initial conditions are set as:

t > 0, r = 1, − π
2
< φ <

π

2
, −π < θ < π, and W (φ, θ, 0) = (F ∗, S∗)T

The following analysis will a few considerations into account, primarily that
W is homogeneous and separable, which we know is not always the case. For
the analytic solution to this model, we can make these assumptions.

To solve the eigenvalue problems, we solve their corresponding eigenfunc-
tions. The time dependent eigenvalue problem is already a simple ODE that
is readily solved by an exponential function, which has the solution eλt. The
values for λ can be found from using the quadratic equation on (15). Since we
set the parameters to produce one positive and one negative real eigenvalue,
there is one value of λ that produces exponential growth and one that pro-
duces exponential decay. The nature of the biological application indicates
that the solution must decay, as lung growth naturally slows over time. We
can then eliminate the positive eigenvalue from the solution, so eλ is defined
for negative λ.

The Laplace-Beltrami eigenvalue problem takes a 3-dimensional argument
in spherical coordinates and eliminates the dependence on the radial vector.
If we assume that our solution has the form W (φ, θ, t) = x(φ)y(θ)z(t), the
result is the two Sturm-Liouville equations:

d

dφ
(sinφx′(φ)) +

(
k2 sinφ− µ

sinφ

)
x(φ) = 0 and y′′(θ)− µy(θ) = 0

We find periodic solution for y(θ), since y(π) = y(−π), and likewise for the
derivative y′(θ). This leads to solutions in sine and cosine. The function in
x(φ) is the Legendere equation. We now have the 3 eigenfunctions for W in
t, φ, and θ:

xmn(φ) = Pm
n (cosφ) , ym(θ) = eimθ , and zmn(t) = eλt (20)

12



with m = 0, 1, 2, ... and n ≥ m. The eigenvalue µ is equal to m2. The wave
numbers are necessarily k = ±

√
n(n+ 1), which satisfied the the Legen-

dre Polynomial in φ. Together, the eigenfunctions in x y are define as the
spherical harmonics Y m

n (φ, θ) = Pm
n (cosφ)eimθ, and have many applications

in dynamical systems.12 Since we already established an interval for k in
which the Turing Region exists, we can define the solution in terms of the
maximum and minimum values of k. Let k1 designate the smallest integer
value in (kmin, kmax), and let k2 be the greatest integer value in (kmin, kmax).
Then the analytical solution can be defined as:

W (φ, θ, t) =
∞∑
m=0

k2∑
n=k1≥m

eλtY m
n (φ, θ)

with Amn =

∫ π
0

∫ π
−π

(
F ∗
S∗

)
Y m
n (φ, θ) sinφdθdφ∫ π

0

∫ π
−π[Y m

n (φ, θ)]2 sinφdθdφ

(21)

Considering all the parameter constraints, this solution can be quite com-
plex. Even more analysis can be done to specify the wave numbers under
values of δ. For δ close to 1, the wave number interval may not contain an
integer. A more detailed investigation into this model in the bulk of a 3D
volume under Cartesian coordinates can be found in J.D. Murray’s Mathe-
matical Biology II.13

4 Discussion of Results

If we relate the results of this analysis back to the genetic expression
of FGF10 and SHH, there are some interesting conclusions about how these
morphogens interact. First, α < β indicates that the system must begin with
higher amounts of the inhibitor SHH. Logically, this is necessary to insure
that lung growth does not occur too quickly. Also, the constraint δ > 1
indicates that SHH must diffuse faster than FGF10. We can see that SHH’s
role as the inhibitor is vital; considering it needs high initial concentrations
and high diffusion rates in order to regulate the system.
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Although the analytical solution was found and the constraints are known,
no 3D visualization was created. While other researchers have successfully
done so both numerically and analytically,14 15 16 The lack of context in bi-
ological systems makes for weak speculations. Therefore, such images have
been omitted. The relationship between FGF10 and SHH may be explained
by the mechanisms described in this paper, however this will only be known
after solving on a growing domain. Solving on an ellipsoid may be more
relevant, but the purpose of this analysis is to gain an understanding about
how patterns form via chemical reactions, which can be applied to lung de-
velopment when the domain is a more complex structure.

This research is only a small stepping stone to an investigation into human
lung formation. An analysis of this model on a growing 3D mesh of the human
lung is the ultimate goal. However, there is no analytical solution to such
complex geometries, so the finite element method will be employed using the
C++ library deal.ii. There is still much to research to explore in this topic,
and this specific application has not yet been done.

5 Conclusion

Although this line of research is ripe for analysis, the methodologies are
not without criticism. Many biologists disapprove of Turing’s methods, be-
cause they apply to so few biological systems. Lung branching is one such
system, however it is still unknown why Turing analysis explains this phe-
nomena. The highly complex interaction between many genes during fetal
development hides the subtle influences that may contribute to lung branch-
ing, and current biological research has not yet been able to observe these
interactions in utero.

While Turing’s theories on reaction-diffusion systems are likely not the
only explanation for pattern formation in this context, they may many appli-
cations to offer and perhaps even more not yet explored. Particularly, there
may be a possibility for treating Congenital Diaphragmatic Hernias (CDH),
which causes hypoplastic lung development in the fetus. Current treatment
options have low success rates, but more research will help pediatricians pro-
vide better treatment options. With the rapid advances in technology we see
every year, perhaps soon we will be able to provide gene therapy to regrow
undeveloped lungs, or even make artificial ones. For now, we can take small
but important steps towards these goals.
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[15] C. Varea, J. L. Aragó, and R. A. Barrio, “Turing patterns on a sphere,”
Physical Review, vol. 60, no. 4, pp. 4588–4592, 1999.

[16] L. Murphy, C. Venkataraman, and A. Madzvamuse, “A computational
approach for mode isolation for reaction-diffusion systems on arbitraty
geometries,” 2016.

16


