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1 Introduction

Chronic or degenerative diseases of the eye have been historically difficult to medicate
properly [1]. For many such diseases, medicated eye drops must be administered
both frequently and accurately to ensure successful treatment. Failure to adhere to
such guidelines results in significantly decreased effectiveness [2]. For this reason,
researchers continue to explore medicated contact lenses as an alternative to eye
drops [1][3][4]. We present a simple model to help understand the effectiveness of
drug delivery to the cornea by medicated hydrogel contact lenses. This type of
targeted medication has significant applications for the treatment of glaucoma, an
eye disease that can cause permanent blindness[1].

The tear film is a three-layered film that sits on top of the ocular surface and
serves to protect the eye and promote clear vision. The outermost layer is made
up of lipids, the middle and thickest layer is comprised mostly of water, and the
innermost layer is formed by mucins [5]. We ignore the outer and inner layers and
consider only the tear film (TF) and the inserted contact lens (CL).

For this treatment, the contact lens is saturated with some drug, and when in-
serted into the eye, the drug diffuses into the surrounding tear films. Figure 1 shows
the anatomy of the eye with an inserted contact lens. Note that the contact lens
divides the tear film into two parts: the pre-lens tear film (PrLTF), which is exposed
to the environment, and the post-lens tear film (PoTF), which borders the cornea.
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Figure 1: Anatomy of the eye with an inserted contact lens (not to scale).

By solving a diffusion equation along with boundary conditions for the PrLTF
and PoLTF thresholds, we derive an analytical solution describing the concentration
of the drug in the CL in space and time. MATLAB 2017a is used to solve the
problem numerically along with equations for the thickness and drug concentration
in the PrLTF and PoLTF. We then visualize the solution with varying parameter
values. From these results, we are able to predict the amount of the drug that reaches
the cornea and the amount that is lost to lateral flow or other factors.

2 Models

We begin with some simple assumptions to build a framework of the model. During
CL wear the drug can diffuse from the CL into the PrLTF and into the PoLTF as well
as within the CL. Both the PrLTF and PoLTF thicknesses can change over time;
this affects the drug concentration in those compartments. The drug can be lost
from the PrLTF or PoLTF laterally and from the PoLTF to the cornea; we assume
the drug cannot return from these escape routes. The following schematic captures
these assumptions:

2



Figure 2: Schematic model of the contact lens system. Arrows indicate direction of
diffusion. Concentration values Ci are found for the bolded boxes.

We construct a compartment model consisting of a system of partial and ordinary
differential equations to describe the dynamics of the drug concentration. The three
concentration variables to be considered are:

C, drug concentration in the contact lens
Cpre, drug concentration in PrLTF
Cpost, drug concentration in PoLTF

We also build ordinary differen-

tial equations for the thickness of the PrLTF and PoLTF over time.
The following subsections describe the dynamics of drug flow between the three

regions.

2.1 Assumptions

We now discuss more complex assumptions that we will build into our model. We
consider factors that will change the thickness or concentration of a compartment
during a single blink and across many blink cycles.

Evaporation of the PrLTF removes water, increasing the concentration of the drug
in the PrLTF between blinks. During a blink, the fluid in the PrLTF is replenished
and some portion of the drug is swept away during the blink. During a blink,
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the contact lens moves due to lid motion in both the lateral (along the cornea) and
transverse (towards/away from the cornea) directions. This creates a squeezing effect
in the PoLTF that removes fluid at the periphery of the contact lens. We assume
there is no deformation of the contact lens shape from blinking or PrLTF or PoLTF
motion.

Initially the contact lens is uniformly saturated with a drug at concentration Cinit.
The contact lens thickness (200 µm) is much smaller than its lateral extent O(cm)
and so diffusion in the lateral direction is neglected. The pre- and post-lens films each
have thicknesses on the order of 5µm and as such are much thinner than the contact
lens. An estimate for the diffusion coefficient in the pre- and post-lens tear films is
Dfilm = 5 × 10−10m2 /s. Using the thickness hfilm = 5µm gives an estimate for the
time scale of diffusion across the thickness of the contact lens as h2

film/Dfilm = 0.05s.
In the contact lens the effective diffusion coefficient is Deff = 5 × 10−12m2 s−1. The
corresponding time scale for diffusion across the lens is H2/Deff = 8000s. Given
the time scale estimates above, we assume that the pre- and post-lens tear films
are uniformly mixed and have concentrations Cpre(t) and Cpost(t) that depend only
on time. The diffusion problem in the contact lens neglects diffusion in the lateral
direction (along the cornea) and addresses only diffusion in the transverse direction.
Osmosis adds water to the PoLTF from the cornea, diluting the concentration of the
drug in the PoLTF (although we do not directly include this effect). A restoring
term (that could be driven by osmosis and/or by elastic rebound of the lens after a
blink) will be included to allow the post lens tear film to, on average over multiple
blink cycles, maintain a steady thickness. The drug cannot come around the CL
from the PrLTF and get to the PoLTF.

2.2 The Contact Lens Solution

If we begin by ignoring the PrLTF and PoLTF, we can focus on the CL itself and
create a simple model for the dynamics of the drug concentration. The simplest
possible is a basic diffusion model:

∂tC = D∂2
zC, −L < z < L (1)

with C(z, 0) = 1 for −L < z < L and C(z, 0) = 0 else, with a symmetry condition
∂zC(0, t) = 0. This assumes an infinite bath of fluid for the drug to diffuse outward
through. If we assume instead that ∂zC(±L, t) = 0, we are assuming no drug
concentration escapes through the top or bottom of the lens.

Under this simple model, the amount of drug released up to time t, denoted Mt
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is (counting both sides)

Mt = −2

∫ t

0

D
∂C

∂z
(x = L, t)dt

The problem listed above has an exact solution and the fractional drug release can
be expressed as

Mt

M∞
= 1−

∞∑
n=0

8

(2n+ 1)2π2
exp

[
−(2n+ 1)2π2

4

Dt

L2

]
In the contact lens, we must account for the different layers. We assign the

PoLTF-cornea boundary the value z = 0. Let hpost(t) be the width of the PoLTF, H
be the width of the contact lens and hpre the width of the PrLTF. Then if Cpost and
Cpre are the concentrations in PoLTF and PrLTF, respectively, then we impose a
new boundary condition for the concentration C on the contact lens. This boundary
condition couples the contact lens concentration to that of the PrLFT and PoLFT.

Thus we obtain the model shown below. Here, k is the partition coefficient of the
lens-tearfilm boundary. See Figure 3 for a visual representation of the model with
boundary conditions.

C(hpost, t) = kCpre(t) t > 0
∂tC = D∂2

zC, hpost < z < hpost +H
C(hpost, t) = kCpost(t) t > 0

(2)

Figure 3: The concentration C of drug on the contact lens satisfies the PDE and
boundary conditions displayed. Direction of flow is indicated by arrows.
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2.3 Pre-Lens Tear Film Equations

We develop the model in the PrLTF by considering the physical aspects of blinking
and evaporation. The height of the tear film layer hpre will decrease depending on the
evaporation J , only to be replenished by blinking. We choose the simplest possible
expression for J and let it be constant. We model a blink by a repeated Gaussian
G(t); this restores the height of the fluid. Thus we get a differential equation for
hpre.

dhpre

dt
= −J + J ·G(t) (3)

Next we consider how the mass mpre of drug in the PrLTF fluctuates due to
diffusion from the contact lens and washing away by blinking. We find the mass by
its physical definition. Here, A is the cross-sectional area of the TF.

mpre(t) = A · hpre · Cpre (4)

The influx of mass from the contact lens will be the spatial derivative of the CL
solution C evaluated at the CL-PrLTF boundary. During a blink, fresh fluid wipes
away some proportion rpre of the amount of mass mpre present. This removal happens
in a wave similar to the rise of hpre. Thus we get a differential equation of the form

d

dt
(mpre) = A

(
−rprehpreCpreG(t)−D ∂C

∂z

∣∣∣∣
z=H+hpost

)
(5)

Writing in terms of Cpre, and canceling the common term A, we obtain our system
for PrLTF.

dhpre

dt
= −J + J ·G(t) t > 0

d

dt
(hpreCpre) = −rprehpreCpreG(t)−D ∂C

∂z

∣∣∣∣
z=H+hpost

(6)

2.4 Post-Lens Tear Film Model

For the PoLTF, we have
dhpost

dt
= Qpost

B +Qpost
rebound (7)

d

dt
(hpostCpost) = D

∂C

∂z

∣∣∣∣
z=H

− kCCpost −Qpost, C
B +Qpost, C

rebound (8)
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Each of the terms is described in the table below:
Qpost
B compression of the PoLFT during the blinking phase

Qpost
rebound the return of hpost to the initial maximum height hinit

post

D ∂C
∂z

∣∣
z=H

influx due to diffusion from the contact lens

−kCCpost outflux from PoLFT into the cornea

Qpost, C
B mass flux leaving the system due to squeezing of the PoLFT during blinking

Qpost, C
rebound mass flux reentering the system during rebound

2.4.1 Blink force

We first consider the fluxes in the PoLTF resulting from the blink. We can model
the situation as a classic fluid mechanics problem of a force applied to a flat plate
sitting on top of a thin film; see [6] for further details on starting assumptions
and consequences. The film is assumed to have thickness h(t). Let the coordinate
horizontally along the film be x and vertically through the film be z. We will think
of the CL as applying a downward force F to the PoLTF, where the CL has its edges
at x = ±W. The thin film approximation of the Navier-Stokes equations in 2D is

0 = −∂zp, (9)

0 = −∂xp+ µ∂2
zu, (10)

0 = ∂xu+ ∂zv, (11)

where the first two equations are conservation of momentum in the z− and x−
directions, respectively, and the last is the continuity equation. The boundary con-
ditions are no slip and no flux at z = 0: u = 0, v = 0, no slip on the plate at z = h:
v = dh

dt
, and we allow for tangential movement of the fluid along the bottom of the

plate: u = U0(t) at z = h. We also have a pressure boundary condition: p = 0 at
x = ±W . Here, we are letting p = p′ − p0, where p′ is the actual pressure and p0 is
atmospheric pressure.

We begin by noting that Eqn. (9) implies p is independent of z, and thus we may
integrate Eqn. (10) twice in z to find that

u(x, z, t) =
1

2µ
∂xp(z

2 − hz) +
U0(t)z

h
, (12)
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where we have implemented the boundary conditions. Next, using the continuity
equation, we see that

v = − 1

2µ
∂2
xp

∫ z

0

(s2 − sh) ds = − 1

µ
∂2
xp

(
z3

6
− z2h

4

)
. (13)

Evaluating v at the film/plate interface gives

dh

dt
=
∂2
xp

12µ
h3. (14)

Rearranging for an equation for p, integrating twice in x and applying boundary
conditions gives

p =
6µ

h3

dh

dt
(x2 −W 2). (15)

We now note that the force applied to the fluid by the CL should balance the total
pressure across the lens:

0 = F +

∫ W

−W
p dx. (16)

Thus, integrating pressure along the lens, we find

F = −6µ

h3

dh

dt

∫ W

−W
(x2 −W 2)dx =

8µ

h3

dh

dt
W 3. (17)

This suggests a form for Qpost
B given below:

Qpost
B =

Fh3
post

8µW 3
. (18)

It is worth noting that h(t)� W for all times. Thus, this force applied by the lens
must be very large in order to change the thickness of the PoLTF. We will choose
this expression for dh/dt for Qpost

B , and at least initially choose QE (elastic flux) so
that it restores the fluid lost by Qpost

B .
Another way we could arrive at Qpost

B is by computing

Qpost
B =

∫ h

0

u dz (19)

at both edges of the lens. Here, we are assuming this is the flux of fluid that escapes
laterally beyond the lens. Then we will choose Qpost,C

B to be CpostQ
post
B . To this end,∫ h

0

u|x=Wdz =
1

2µ
∂xp

∫ h

0

(z2 − zh) dz +
U0

h

∫ h

0

z dz = − h3

12µ
∂xp|x=W +

U0h

2
. (20)
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Differentiating Eqn. (15) in x and subtituting this into Eqn. (20), after cancelation
we have

−dh
dt
w +

U0h

2
. (21)

Note that this is the outward flux at x = W , where the outward normal vector points
in the same direction. The outward flux at x = −W points opposite the outward
normal vector, so that we will choose

Qpost,C
B = −Cpost

dhpost

dt
(22)

for the total concentration flux if dh/dt < 0, and Qc,post
B = 0 if dh/dt > 0.

2.4.2 Other fluxes

We choose the quantity Qpost
rebound to reflect the relatively slow bounce-back of hpost to

hinit
post. According to Maki and Ross [7] the eye can take up to 5 second after a blink to

return to the equilibrium length hinit
post. Thus we choose Qpost

rebound so that the resultant
hpost behaves like a hill function: we want rapid initial rebound, then a slow-down
as hpost rises. Thus we choose

Qpost
rebound = KR(hinit

post − hpost), (23)

with KR chosen to ensure the correct qualitative behavior of hpost.
Furthermore, we assume that during rebound, none of the escaped drug returns

to the system. Therefore we set Qpost,C
rebound = 0. Combining, we get the following

equations for PoLTF:

dhpost

dt
= −

Fh3
post

8µW 3
G(t) +KR(hinit

post − hpost), (24)

d

dt
(hpostCpost) = Cpost

(
dhpost

dt

)−
G(t) +D∂zC|z=hpost − kcCpost(t), (25)

where kc is the partition coefficient of the cornea-PoLTF boundary and(
dhpost

dt

)−
= min

{
dhpost

dt
, 0

}
.

perhaps GR = κ(1 − G(t)) so that the restoring force acts only between blinks.
This might need to be, in total on a blink cycle, around hpost−heq so that the PoLTF
thickness never goes to zero.
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3 Analytical Solution to the Contact Lens Layer

Here we show our analysis of an explicit solution to the diffusion equation governing
the concentration C(t) of the drug within the contact lens. This is based on [8],
although we believe their solution to be erroneous. We provide our analysis of their
solution, ignoring errors. We also include our own, corrected solution in Section 3.6.

The system we wish to solve is:
C(hpost +H, t) = k · Cpre(t)
∂C
∂t

= D ∂2C
∂z2

C(hpost, t) = k · Cpost(t)

(26)

We incorporate the PrLTF and PoLTF boundary conditions separately by mak-
ing substitutions of z = s and z = H − s into the solution from [8]. This yields two
independent solutions which we can add to find C(t):

3.1 Li-Chauhan Solution

Li et al started with a system similar to ours:
C(z = H, t) = k · Cpre(t)
∂C
∂t

= D ∂2C
∂z2

C(z = 0, t) = 0
C(z, t = 0) = Cinit

(27)

C(z, t) = Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)πz

H

)
e

−(2n+1)2π2

H2 D·t

+KCpre(t)

[
z

H
+
∞∑
n=1

2(−1)n

nπ
sin(

nπz

H
)

]

−K
∫ t

0

Cpre(τ)
∞∑
n=1

2(−1)n
nπD

H2
sin
(nπz
H

)
e

(−n2π2)D(t−τ)
H2 dτ

(28)

We adapt this solution for our diffusion system in two separate parts as below:

3.2 System 1

By substituting (H − z) for z we obtain a solution for diffusion system with zero
concentration within the PrLTF and drug diffusion to only to the PoLTF; call this
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the PoLFT solution.

C1(z = hpost +H, t) = 0

∂C1

∂t
= D

∂2C1

∂z2

C1(z = hpost, t) = k · Cpost(t)

C1(z, t = 0) =
1

2
Cinit

(29)

The full analytical solution is found to be:

C1(z, t) =
1

2
Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)π(H − z)

H

)
e

−(2n+1)2π2

H2 D·t

+KCpost(t)

[
z

H
+
∞∑
n=1

2(−1)n

nπ
sin(

nπ(H − z)

H
)

]

−K
∫ t

0

Cpost(τ)
∞∑
n=1

2(−1)n
nπD

H2
sin

(
nπ(H − z)

H

)
e

(−n2π2)D(t−τ)
H2 dτ

(30)

3.3 System 2

Equation 27 gives a direct solution for the diffusion system with zero concentration
within the PotLTF and drug diffusion only to the PrLTF; call this the PrLFT solu-
tion.

C2(z = hpost +H, t) = k · Cpre(t)

∂C2

∂t
= D

∂2C2

∂z2

C2(z = hpost, t) = 0

C2(Z, t = 0) =
1

2
Cinit

(31)
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The full analytical solution is as follows:

C2(z, t) =
1

2
Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)πz

H

)
e

−(2n+1)2π2

H2 D·t

+KCpre(t)

[
z

H
+
∞∑
n=1

2(−1)n

nπ
sin(

nπz

H
)

]

−K
∫ t

0

Cpre(τ)
∞∑
n=1

2(−1)n
nπD

H2
sin
(nπz
H

)
e

(−n2π2)D(t−τ)
H2 dτ

(32)

It can be easily verified that

C = C1 + C2 (33)

is a solution for the diffusion system of 26. Also note that the middle term con-
sisting of the product of KCpre(t) and z/H plus an infinite sum in equation 30 and
equation 32 is zero. To evaluate the drug influx quantities from the PoLTF and
PrLFT in 8 and 6, we compute:

dC1

dz

∣∣∣∣
z=0

=
2

H
Ci

∞∑
n=0

e

−(2n+ 1)2π2

H2
D·t

−K
∫ t

0

Cpost(τ)
∞∑
n=1

2(−1)n
n2π2D

H3
e

(−n2π2)D(t− τ)

H2 dτ (34)

dC2

dz

∣∣∣∣
z=0

= − 1

H
Ci

∞∑
n=0

e

−(2n+ 1)2π2

H2
D·t

−K
∫ t

0

Cpost(τ)
∞∑
n=1

2
n2π2D

H3
e

(−n2π2)D(t− τ)

H2 dτ (35)

(36)
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dC1

dz

∣∣∣∣
z=H

= − 2

H
Ci

∞∑
n=0

e

−(2n+ 1)2π2

H2
D·t

+K

∫ t

0

Cpre(τ)
∞∑
n=1

2
n2π2D

H3
e

(−n2π2)D(t− τ)

H2 dτ (37)

dC2

dz

∣∣∣∣
z=H

= − 2

H
Ci

∞∑
n=0

e

−(2n+ 1)2π2

H2
D·t

−K
∫ t

0

Cpre(τ)
∞∑
n=1

2
n2π2D

H3
e

(−n2π2)D(t− τ)

H2 dτ (38)

3.4 Pre-lens and post-lens flux solutions

We now have enough materials for evaluating Fpre(t):

Fpre(t) =
dC

dy

∣∣∣∣
z=y

=
dC1

dy

∣∣∣∣
y=0

+
dC2

dy

∣∣∣∣
y=0

(39)

By appropriate cancellation and merging terms based on results above, we have:

Fpre(t) =
dC

dy

∣∣∣∣
y=0

= Ci

∞∑
n=0

− 4

H
e−

−(2n+1)2π2

H2 D·t

+K

∫ t

0

∞∑
n=1

2(−1)n(Cpre(τ) cos(nπ)− Cpost(τ))
n2π2D

H3
e

−π2n2
H2 D·(t−τ)dτ

(40)
Similarly, we find Fpost(t):

Fpre(t) =
dC

dy

∣∣∣∣
y=H

=
dC1

dy

∣∣∣∣
y=H

+
dC2

dy

∣∣∣∣
y=H

(41)

13



Fpost(t) =
dC

dy

∣∣∣∣
y=0

= Ci

∞∑
n=0

4

H
e−

−(2n+1)2π2

H2 D·t

+K

∫ t

0

∞∑
n=1

2(−1)n(Cpost(τ) cos(nπ)− Cpre(τ))
n2π2D

H3
e

−π2n2
H2 D·(t−τ)dτ

(42)
We note that we could use numerical techniques with this solution to find the

fluxes into the PrLTF and PoLTF by approximating ∂Cz. One option would be to use
cubic splines along with boosting to find a discrete prediction of Cpre(t) and Cpost(t).
Then we could employ an appropriate quadrature rule for numerical integration.

3.5 Issues with Li-Chauhan Solution

We end this section by commenting on the solution in [9]. It is repeated below for
consideration.

C1(z, t) =
1

2
Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)π(H − z)

H

)
e

−(2n+1)2π2

H2 D·t

+KCpost(t)

[
z

H
+
∞∑
n=1

2(−1)n

nπ
sin

(
nπ(H − z)

H

)]

−K
∫ t

0

Cpost(τ)
∞∑
n=1

2(−1)n
nπD

H2
sin

(
nπ(H − z)

H

)
e

(−n2π2)D(t−τ)
H2 dτ

If one attempts to verify that it is a solution to the heat equation, then one must
be careful in passing the derivative under the infinite summations. In fact, when
we take the derivatives with respect to t of the second and third terms, we run into
major issues. In both terms, we find that the putative derivative is not uniformly
convergent–not convergent at all in this case! Thus we cannot pass the derivative
under the summations.

We note that the Fourier series in the second term, with coefficients 2(−1)n

nπ
, is the

Fourier series for − z
H

, and thus the second term is actually 0. The third term is not
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so easily dispatched, as far as we can tell, and attempts to take its t derivative will
be unsuccessful for the above reasons.

This solution is still quite close to the one we obtain below, and perhaps a formal
integration by parts would bridge the gap between the two.

3.6 Analytic Solution to the Diffusion Equation in the Lens

The diffusion equation within the lens for our model is a homogeneous heat equa-
tion with non-constant boundary conditions, Cpre and Cpost. It is coupled with the
compartments generating these boundary conditions as well. We write our solution
using Fourier Series, and so we take an approach using Duhamel’s Principle.

The problem is to find C(z, t) satisfying the conditions below.



dC

dt
= D

d2C

dz2
0 < z < H, 0 < t

C(z, 0) = Ci = 1 0 < z < H

C(0, t) = Cpost(t) 0 < t

C(H, t) = Cpre(t) 0 < t

We approach this problem by first dealing with the two boundary conditions. We
define two simple functions, fpre and fpost, to account for the respective boundary
conditions. We define

fpre(y, t) = Cpre(t)
y

H
(43)

fpost(y, t) = Cpost(t)
H − y
H

(44)

These solve the following systems of equations. We recall that Cpre and Cpost are
both 0 when t = 0.



dfpre

dt
= D

d2fpre

dz2
+ C ′pre

y

H
0 < z < H, 0 < t

fpre(z, 0) = 0 0 < z < H

fpre(0, t) = 0 0 < t

fpre(H, t) = Cpre(t) 0 < t



dfpost

dt
= D

d2fpost

dz2
+ C ′post

y

H
0 < z < H, 0 < t

fpost(z, 0) = 0 0 < z < H

fpost(0, t) = Cpost(t) 0 < t

fpost(H, t) = 0 0 < t
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We will construct our solution C = fpre + fpost + u, where u solves the inhomo-
geneous system below.

du

dt
= D

d2u

dz2
+ C ′pre

y

H
+ C ′post

H − y
H

0 < z < H, 0 < t

u(z, 0) = Ci = 1 0 < z < H

u(0, t) = 0 0 < t

u(H, t) = 0 0 < t

This system is solved through the use of a sin Fourier series expansion of the initial
condition. The boundary conditions are accounted for using Duhamel’s principle, and
this gives us the following formula for the concentration.

C(y, t) =

Ci

∞∑
n=0

4

(2n+ 1)π
sin

(
(2n+ 1)π

H
z

)
e

−(2n+ 1)2π2

H2
Dt

+
1

H
[Cpre(t)z + Cpost(t)(H − z)]

+
1

H

∞∑
n=1

t∫
0

(
2(−1)n

nπ

)[
C ′pre(τ) sin

(nπ
H
z
)

+ C ′post sin
(nπ
H

(H − z)
)]

e
−D

(nπ
H

2

(t−τ)

)
dτ

We invite the reader to verify that this does solve the system 3.6. The first term of
C(y, t) is itself a solution of the homogeneous heat equation with Dirichlet boundary
conditions. The second term clearly satisfies the nonzero boundary conditions, but
upon derivation with respect to t, new terms appear. Careful differentiation of the
third term using Leibniz rule yields a term which cancels with this one.

To check the initial and boundary conditions, it is important to note that the
first term contains the sine series for the constant 1, and that the third term contains
the sign series for −z, used twice.

We note that the solution given in [9, eq.A2-15] is very similar to ours. They
take a Laplace transform approach. However, careful examination shows that their
formula is incorrect, and in fact not differentiable. The second term in their equation
is actually zero–although this is hidden behind a sine series–and the third term is not
differentiable in time, if one pays attention to the convergence rate of the derivative.

16



However, if one naively differentiates through the summation sign, without respect
to appropriate convergence, then you can verify that their formula “formally” solves
the problem. Our solution is very close to theirs, and may only differ by a formal
integration by parts.

4 Nondimensionalization

We now move towards a numerical solution of the full problem. In doing so we will
discretize even the diffusion problem discussed above, although as mentioned it has an
analytic solution. Whether solved analytically or numerically, nondimensionalization
is required to identify dominant parameters and to make the problem physically
relevant. In order to nondimensionalize the system, we must pick essential quantities
in several different units used in our problem. We choose the height of the contact
lens in meters, H, as our characteristic length, the time of one blink cycle in seconds,
tB, and the initial concentration of the drug in the contact lens Cinit as our base
variable for concentration. All other variables are nondimensionalized in terms of
these.

4.1 Justification of 1D diffusion model

Note that if we look again at the problem just in the CL, we could begin with a two
dimensional version of the diffusion equation and argue that due to our scalings, the
problem may be reduced to one in a single spatial variable.

Defining scalings for our variables in terms of characteristic units:

x̄ =
x

W
, z̄ =

z

H
, t̄ =

t

tB
, C̄ =

C

Cinit

,

we let bars denote dimensionless variables and W � H. Here, we are modeling the
TF-CL system so that the z-axis is aligned perpendicular to the lens and the x-axis
is aligned along the lens. Inserting this into the 2D diffusion equation gives

Cinit

tB
∂tC =

CinitD

H2

(
∂2
zC +

(
H

W

)2

∂2
xC

)
(45)

Letting H/W = ε, we see that at leading order in ε, the above equation becomes

∂tC =
tBD

H2
∂2
zC. (46)

This suggests that in a lubrication theory setting like the TF, a one-dimensional
model in space is sufficient to capture the dynamics of the system.
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4.2 Variables

We list variables that are now non-dimensionalized:

t =
t

tB
(47)

z =
d

H
(48)

h pre =
hpre

H
(49)

h post =
hpost

H
(50)

C =
C

Cinit

(51)

C pre =
Cpre

Cinit

(52)

C post =
Cpost

Cinit

(53)

G ( t ) = tBG(t) (54)

W =
W

H
(55)

J =
tB
H
J (56)

D =
tB
H2

D (57)

F =
tBFblink

8µH W 3
(58)

K L =
KLtB
H

(59)

σ =
σ

tB
(60)

Many of these are standard substitutions, but we highlight the function G(t). We
have chosen G(t) to be an approximation of the Dirac delta function. (Several such
substitutions might be made, with various levels of accuracy in correctly approxi-
mating the motion and effect of an eye blink.) However, this necessitates G(t) have
the units 1/s, and so even this must be nondimensionalized.

We also remark on the variables W , J , D , F , and KL as they are governing
parameters for the system. These are the parameters that affect the behavior and
outcome of the system, such as total drug absorbed into the cornea, or lost into the
rest of the eye.

4.3 Numerical Parameter Values

Parameter values k, Kc and D were obtained from the paper by Li & Chauhan
[9]. Estimates for the blink force were from papers by Chauhan & Radke (2002) and
Martin & Holden (1986). From a study involving 42 healthy TF subjects, the average
blink rate was measured at 11 blinks/min [10]. Consider moving this to the results

section: The drug diffuses out of the contact lens after approximately (2×10−4m)2

5×10−12m2 s, or
about 2 hours. This corresponds to about 1600 blinks, assuming the subject blinks
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every 5 seconds. For the post- and pre- lens, the drug diffuses through these regions
in about 0.05 seconds. add citation

Many of our parameter values were taken from [11], whose authors used a sim-
ilar model framework. We list these values below, along with their corresponding
dimensionless parameters.

4.3.1 Table of Variables and Parameters

tB length of blink cycle 5 s t B 1
H CL height 2−4 m H 1
J PrLTF evaporation rate 1

6
× 10−7m/s J 4.167× 10−4

hinit
pre PrLTF initial height 5× 10−6 m h init

pre 2.5× 10−2

hinit
post PoLTF initial height 5× 10−6 m h init

post 7.5× 10−2

W CL width 7× 10−3 m W 35
D CL diffusion constant 5× 10−12 m2/s D 6.25× 10−4

CL-TF boundary diffusion coefficient k 5
Kc PoLFT-cornea boundary diffusion coefficient 1.5× 10−7m/s K c 3.75× 10−3

KR PoLFT rebound coefficient 5 K R 1
µ TF viscosity 1.3× 10−3Pa· s
F force exerted by CL on PoLTF 1-10 N/m F 5.61× 102

4.4 Equations in Nondimensional Form

We now write out our system of equations in these new variables, beginning with the
ordinary differential equations, followed by the partial differential equation governing
the diffusion of the drug through the hydrogel lens. In the upcoming section, we
compute a numerical solution to this system of differential equations.

d h pre

d t
= − J + J G ( t ) (61)

d h preC pre

d t
= rpreC pre h preG ( t )− D

dC

d z

∣∣∣∣
z=1+h post

(62)

d h post

d t
= F h post G ( t ) + K R(h init

post − h post) (63)

d h post C post

d t
= C post

(
d h post

d t

)−
+ D

dC

d z

∣∣∣∣
z=h post

− K LC post (64)
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dC

d t
= D

d2C

d z 2
z ∈ (h post, h post + 1)

C = k C pre z = hpost + 1

C = k C post z = h post

5 Results

The following solutions are obtained numerically. We begin by discretizing the spatial
domain of the CL using the Chebyshev spectral collocation method [12]; the resulting
system of ODEs at the Chebyshev points along with the ODEs for the thickness of
the PrLTF, drug mass in the PrLTF, thickness of the PoLTF, and drug mass in the
PoLTF is solved in Matlab 2017a via ode15s.

5.1 Numerical solutions

For the plots that follow, we use a decay rate of r = 10 to control the mass of
the drug leaving the PrLTF and kr = 5 to control the restoring rate at which the
PrLTF thickness returns to its initial value. Our nondimensional CL domain is
represented by a unit length, where z = 0 is the CL/PoLTF boundary, and z = 1 is
the CL/PrLTF boundary.

There is a distinct difference in the qualitative nature of solutions at short times
versus long times. The following two plots highlight the slowness of diffusion in the
CL. Each curve represents a different time level measured in number of blink cycles
completed. We note that at short times, the middle of the CL remains near initial
concentration, while more drug is diffused to the PrLTF than the PoLTF. At long
times, the drug has diffused away from the middle of the CL and the concentration
is approaching zero at the PrLTF and PoLTF boundaries. We remind the reader
that a rough estimate of the time it would take all drug concentration to leave the
CL is 1600 blinks; Fig. 5 shows this.
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Figure 4: Drug concentration in the CL from the PrLTF (z = 0) to the PoLTF
(z = 1) over 25 blink cycles.

Figure 5: Drug concentration in the CL from the PrLTF to the PoLTF.

Figure Fig. 6 looks at the dynamics in the PrLTF and PoLTF for short times.
We recall our assumption that these layers are thin enough relative to the CL that
we treat them as point quantities in space that vary over time. The PrLTF over time
is changed slightly by evaporation; we expect this tiny oscillation due to the blink
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action G(t) and our small evaporation force J . The action of the blink on the PrLTF
concentration can be seen by the periodic spikes in the lower left corner plot of Fig.
6. The PoLTF thickness has a greater oscillation than that of the PrLTF due to
the downward force from the CL (discussed in section 2.4.1). However, just like the
blink action on the PrLTF, there is a restorative force that acts to bring the PoLTF
thickness closer to its starting value after each blink. The drug concentration in the
PoLTF is not affected by the blink cycle and thus is non-oscillatory, but ultimately
decreases over time due to the drug mass lost to the cornea and laterally beyond the
CL. The dynamics shown in Fig. 6 are shown only at short times, but their trends
continue if we increase the number of blink cycles.

Figure 6: PrLTF and PoLTF thickness and concentration dynamics over 20 blink
cycles.

Figures 7, 8, and 9 track the mass of the drug over time as well as how much
of the drug has been delivered to the cornea. The force acting on the PoLTF is
an order of magnitude greater for the case plotted in Figure 7 than for the case in
Figure 8. The lower force case delivers approximately 18% of the initial drug to the
cornea, while the higher drug case delivers approximately 25% of the initial drug to
the cornea.
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In Figure 9, the value of rpre (which controls how much drug is lost during blink-
ing) has been lowered in addition to the force on the PoLTF. As expected, the result-
ing amount of drug delivered to the cornea is higher than in either of the previous
two cases, with approximately 27% of the drug being delivered to the cornea.

In all cases, the drug leaves the system at a decreasing rate, and the proportion of
the drug leaving the system that goes to the cornea appears to approach a constant
after hundreds of blinks. Moving most of the mass out of the system appears to
require around 1200 blinks, which corresponds to one to two hours.

Figure 7: Mass tracked over time.
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Figure 8: Mass tracked over time with a lower force acting on the PoLTF.

Figure 9: Mass tracked over time with a lower force acting on the PoLTF.

6 Summary

Starting from a very simple diffusion model for the contact lens, we have introduced
a framework to incorporate the PrLTF and PoLTF and explored both analytic and
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numerical solutions in our quest for a model for the diffusion of a drug from a
contact lens into the cornea. Our model involves ODEs for the PrLTF and PoLTF
and keeps the diffusion equation for the CL. By coupling these models together at
the boundaries, we have found a system of ordinary differential equations and solved
that system numerically for various values of the governing parameters.

Exact values for the governing parameters are unknown, but using reasonable
estimates from the literature has given results that are consistent with other findings.
Specifically, the main result is that approximately 20% of the drug is eventually
delivered to the cornea, while 80% is lost to non-targeted areas. The actual amount
delivered to the cornea depends on the specific parameters chosen to model what
happens to the drug during the blink, such as the force on the PoLTF and the factor
capturing how much fluid is washed away from the PoLTF during a blink, kpre.

Avenues for future work include:

• Incorporating the analytical solution to the diffusion equation for the contact
lens with time-varying boundary conditions discussed in this paper into the
numerical scheme.

• Including the lateral motion of the contact lens in the model.

• Modeling the spatial dependence of the concentration in the PrLTF and PoLTF.

• Considering more complicated expressions for the evaporation function J , per-

haps involving an van der Waals term, such as J = 1 −
(
heq

h

)3

, that further

serve to prevent the film from thinning to zero.
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