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The Developing Lung

Figure: Human bronchial tree of adult
male, color coded.

This research examines the
pseudoglandular stage of
vertebrate lung development
and the role of two gene
proteins in branching
morphogenesis: Fibroblast
Growth Factor 10 FGF10 and
Sonic Hedgehog gene SHH.
These proteins form a
feedback loop.[1]
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The Developing Lung

(a) Branching at the
pseudoglandular
stage

(b) Gene proteins
di�use from lung
surface

(c) Feedback loop
between FGF10 and
SHH genes
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The Developing Lung

Applications to lung regeneration
and disease research:

Congenital Diaphragmatic Hernias
(CDH) causes hypoplastic lung
development in the fetus. There is
currently no treatment to
encourage continued branching
growth postpartum.[2]

Figure: Left-sided CDH in infant
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Analysis Approach

Reaction-Di�usion Equations
∂u
∂t = Du∆u+ f (u, v)
∂v
∂t = Dv∆v + g(u, v)

+
Turing Instability Regions

The system is stable without the di�usion terms.
The system is unstable with the di�usion terms.

=
Pattern Formation Model

The deviation from homogeneity yielding a domain
with nonuniform concentrations of morphogens[3]
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Analysis Approach

Schnakenberg[4] considered a simple kinetic model for a
reaction-di�usion system that emphasized the activator-
depletion relationship between two morphogens:

X
k1−−⇀↽−−k2

F 2 F + S k3−−→ 3 F Y k4−−→ S

F(r, φ, θ, t) is the activator concentration for the FGF10 gene.
S(r, φ, θ, t) is for depletion substrate, or the SHH gene.

And X and Y are precursor substrate concentrations.
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Analysis Approach

This analysis will replace the di�usion term in the classic
reaction-di�usion model with the surface Laplacian ∆Γ, de�ned:

∆Γu = ∇Γ · ∇Γu with ∇Γu = ∇u− (∇u · ~n)~n

The resulting hybrid model of a reaction-di�usion system on the
surface of a sphere is given by:

Ḟ = DF∆ΓF + k1 − k2F + k3F2S

Ṡ = DS∆ΓS+ k4 − k3F2S
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Analysis Approach

Ḟ =

di�usion︷ ︸︸ ︷
DF∆ΓF +

rate constant︷︸︸︷
k1 −

degradation︷︸︸︷
k2F +

autocatalysis︷ ︸︸ ︷
k3F2S

Ṡ = DS∆ΓS︸ ︷︷ ︸
di�usion

+ k4︸︷︷︸
rate constant

− k3F2S︸ ︷︷ ︸
autocatalysis

Di�usion Net movement of substrates
Rate Constant Precursor substrate production of FGF10 and SHH
Degradation FGF10 is catalyzed to a precursor substrate
Autocatalysis FGF10 uses SHH for self-production
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Stability Without Diffusion

Using scaling substitutions, we get:

α =
k1
k2

√
k3
k2

β =
k4
k2

√
k3
k2

δ =
DS
DF

and γ = k2

Ḟ = ∆ΓF + γ
(
α− F + F2S

)
= ∆ΓF + γ f (F, S)

Ṡ = δ∆ΓS+ γ
(
β − F2S

)
= δ∆ΓS+ γ s(F, S)

Eliminating the di�usion terms, the �xed points are:

(F∗, S∗) =

(
α + β,

β

(α + β)2

)
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Stability Without Diffusion

To determine stability a perturbation is made:

F = F∗ + ε F̃ −→ Ḟ = ε F̃t = γ f (F∗ + ε F̃)

S = S∗ + ε S̃ −→ Ṡ = ε S̃t = γ s(S∗ + ε S̃)

With some substitutions and a Taylor expansion:(
F̃t
S̃t

)
= γ

(
fF(F∗, S∗) fS(F∗, S∗)

sF(F∗, S∗) sS(F∗, S∗)

)
·

(
F̃
S̃

)
+O(ε2)

Or more simply:

Ẇ = γ J∗W
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Stability Without Diffusion

The Jacobian is evaluated to be:

J∗ =

−1+
2β

α + β
(α + β)2

− 2β
α + β

− (α + β)2


Yielding the eigenvalues:

λ =
γ

2

 β − α
(α + β)

− (α + β)2 ±

√(
α− β
α + β

+ (α + β)2
)2
− 4(α + β)2


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Stability Without Diffusion

Stable parameters: β − α < (α + β)3

(a) Stability region for α and β values
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The Eigenvalue Problem

Without di�usion, there was Ẇ = γ J∗W. With di�usion:

Ẇ = D∆ΓW + γ J∗W

To turn this into a linear system:

Ẇ = λW and ∆ΓW = −k2W

This yields the eigenfunctions for W:

eλt, Pmn (cosφ), and eimθ with m = 0, 1, 2, ... and n ≥ m

Leaving the linear system:

λW = −Dk2W + γJ∗W
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Instability with Diffusion

The parameter constraints for instability with di�usion are:

det(−Dk2 + γ J∗ − λI) = 0 and ∃ Re[λ(k2)] > 0

Which gives the characteristic equation:

λ2 − λ[γ (fF + sS)− k2(1+ δ)] + h(k2) = 0

Where h(k2) = δk4 − γ (δfF + sS)k2 + γ det(J∗)

For instability:

Re[λ(k2)] > 0 −→ γ (δfF + sS)k2 > δk4 + γ det(J∗)
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Instability with Diffusion

δ > 1
Therefore, SHH must di�use faster than FGF10
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Analytical Solution

Here is the analytic solution to the eigenvalue problem.

W(φ, θ, t) =
∞∑
m=0

∞∑
n=m

Amn · eλt · Ymn (φ, θ)

With

Amn =

∫ π
0
∫ π
−π
(F∗
S∗
)
Ymn (φ, θ) sinφdθdφ∫ π

0
∫ π
−π[Ymn (φ, θ)]2 sinφdθdφ
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Surface Diffusion Patterns

Figure: R=100, α = 0.1, β = 0.9, δ = 10, γ = 4[5]
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Surface Diffusion Patterns

Figure: r=20, α = 0.1, β = 0.9, δ = 20, γ = 0.5[5]
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Surface Diffusion Patterns

Figure: r=40, α = 0.01, β = 1.2, δ = 10, γ = 0.1[5]
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Next Steps and Future Work

Thesis Goals:

Examine model on the
mesh of a human lung
Use surface �nite element
method for numerical
solutions
Solve on growing domain

Figure: 3D model of left lung
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