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SIR Model with Preventative Measure Comparison

SIR is the Susceptible→ Infected→ Recovered shorthand when discussing disease
spread and control. Infectious disease is a complex and important issue with global
repercussions. Here we examine an influenza outbreak in a population of ≈ 150,000
over 48 weeks. Figure 1 shows the data collected on cases of the flu as well as a
best-fit model with optimized β and γ parameters. This model fits the data fairly
accurately, yet underestimates the peak infected point. There also appears to be a
sharp increase in infected individuals around week 12, which may be due to a large,
indoor gathering.
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Figure 1

Figure 2 shows us the model for the number of susceptible people in the popu-
lation. Those who have not contracted the flu are deemed susceptible, while those
that have and those that have recovered are not considered susceptible. As one
would expect, the greatest reduction in susceptible individuals is between 15 and 20
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weeks, when infected cases are at their highest. For both Figure 1 and Figure 2, γ
was predicted to be 3.41, giving the average length of infectious period to be about
2 days. This gives a reasonable estimate of the infectious period of influenza and
reflects many past doctors’ advice to remain at home for at least 3 days when sick,
accounting for slightly longer infectious periods.

0 5 10 15 20 25 30 35 40 45

Number of Weeks,  n

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

N
um

be
r 

of
 S

us
ce

pt
ib

le
 In

di
vi

du
al

s,
  

S
n

105 SIR Model: Susceptible Individuals

Susceptible Individuals S
n

Figure 2

Figure 3 presents a comparison among the best fit data and 3 controls for spread-
ing the flu: giving vaccinations to 6% of the population, providing education on how
to prevent the spread of disease, and using symptom shortening drugs like Tamiflu.
These models are sown over 60 weeks. Clearly, the vaccine method is most effective.
It is highly significant that just vaccinating 6% of the population resulted in a 64%
decrease in total flu cases. This is a highly cost effective method for the consumer
as flu vaccines can be found free or very cheaply. The cost associated with creating
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and distributing the vaccine is rather high, even when accounting for a world-wide
market. The education control method is also highly effective, as more education
about the spread of the virus will result in more effective self-quarantine. This is
also cost effective, as adding such information to school curriculum, employee train-
ing videos, and public service announcements will not be a significant burden on the
individual. The symptom drug method is clearly the least effective, with only an
18% decrease in cases, and less cost effective as well. However, the drug model does
predict a shorter outbreak period than the vaccine or education models, which still
show some infected individuals after 50 weeks.
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Equilibria and Linearizion

We can find the equilibria of both the model for the infected population and
the model for the susceptible population, which are interdependent. We will focus
on non-negative values, as obtaining a negative value for a population model is not
applicable. The model for the susceptible population is given by:

Sn+1 = Sn − β
N
· Sn · In

Setting Sn+1 = Sn we get:

Sn = Sn − β
N
· Sn · In −→ β

N
· Sn · In = 0

So either Se = 0 or Ie = 0. We can’t analyze this model without a non-trivial
value. Looking at the model for the infected population, we have:

In+1 = In + β
N
· Sn · In − γ · In

Setting In+1 = In we have:

In = In + β
N
· Sn · In − γ · In −→ In( β

N
· Sn − γ) = 0

So Ie = 0 or Se = γ · N
β

. We can now analyze the system with an equilibrium
representative of zero infected individuals and some Se number of susceptible indi-
viduals. To linearize this system about the equilibria, first we must establish the
matrix:

Sn+1
In+1

=
Sn− β

N ·Sn·In
In(1+ β

N ·Sn−γ)
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We can linearize this matrix by taking the partial derivatives of each expression
for each variable (In and Sn). We will consider both Sn+1 and In+1 to be functions
of Sn and In.

∂Sn+1
∂Sn

∂Sn+1
∂In

∂In+1
∂Sn

∂In+1
∂In

=
1− β

N ·In − β
N ·Sn

β
N ·In 1+ β

N ·Sn−γ

We established that we want the equilibrium for In+1 to be zero. We will then say
that the equilibrium for Sn+1 is simply Se. Plugging in the values of the equilibrium
into out partial derivatives matrix, we get:

1 − β
N ·Se

0 1+ β
N ·Se−γ

Taking the eigenvalues of this matrix tells us that for the equilibrium to be stable,
Se must satisfy:

|λ2| = |1 + β
N
· Se − γ| ≤ 1 −→ 0 ≤ Se ≤ γ · N

β

Of course, there is the possibility that when these eigenvalues are equal to one
the equilibrium is unstable or a saddle point, but for this analysis we will include one
as a possibility. If we were to plug in our original optimized values for N = 148, 632,
which were β = 3.7697 and γ = 3.4128, we would find that we obtain the inequality
0 ≤ Se ≤ 134, 560. This states that when the disease dies out (because we found
Ie = 0), our remaining population of susceptible individuals must be less than or
equal to 135,560. This is accurate, for we find that 119,720 is the equilibrium for
Sn+1.

Examining this inequality, we see that in order to decrease the total number of
infected individuals (which would yield a higher number of susceptible individuals),
we can take measures like decreasing the contact rate β (through education and
quarantine), or increasing the probability of recovery γ (by using drugs like Tamiflu).
Combining both of these measure will significantly decrease the total number of
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infected individuals, thus increasing our Se. However, although vaccinations are
very effective in controlling an outbreak, they do not influence the likelihood of the
disease spreading and the threshold of the equilibrium in this case.

Another disease that satisfies this SIR model is the common cold. While we can’t
provide a vaccination for the hundreds of viral strains that are out there, we can
provide education similar to influenza education to help reduce the total number of
cases in an outbreak. Over-the-counter drugs for cold symptoms are readily available
as well, and prescription antibiotics can often facilitate recovery quickly. In general,
this study can provide insight into several other infectious diseases, particularly viral
ones. The significant effectiveness of vaccines in relation to the small percentage of
people who receive them is impressive. The current trend of ”anti-vaxers” bodes ill
for public health. We know that a small percentage of vaccinated individuals can
make a huge difference, and conversely, when a small percentage aren’t vaccinated
the ramifications can be dangerous and wide-spread.

SIR Model with Birth and Death Factor

Of course, there are far more complex SIR models that take several patterns
into account. Considering birth and death rates would give our model a bit more
complexity. Let us assume that the birth rate b is equal to the death rate, which will
keep our population constant. We can then model our susceptible S, our infected I,
and our recovered R for the influenza virus as:

Sn+1 = Sn − β
N
· Sn · In + b(In +Rn)

In+1 = In(1− γ − b) + β
N
· Sn · In

Rn+1 = Rn(1− b) + γ · In

Given these three equations, we know that our populationN is always equal to the
sum of the susceptible, infected, and recovered (or, in this case, possibly removed).
We can then use this relationship to model a difference equations for Sn by setting
Rn = N − Sn − In:

Sn+1 = Sn − β
N
· Sn · In + b(N − Sn)

And In+1 remains the same, as it does not explicitly include Rn. Unlike the
previous section, we cannot assume that Ie = 0. Finding the Equilibrium for Sn+1 =
Sn, we get:
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Se = b·N
In· βN+b

And for In+1 = In we have

Ie = 0 or Se = N
β
· (γ + b)

This creates two sets of solutions for the SIR equilibrium model. If Ie1 = 0,
then Se1 = N , which represents the population when no disease is present. Once
influenza is introduced into the population, we can use substitution (and the fact
that R0 = β

γ+b
) to yield equilibria of Ie2 = b · (R0 − 1) · N

β
and Se2 = N

R0
. In order for

these equilibria to be possible, we must have R0 > 1. Otherwise, our values would
not correspond to reality–our infected equilibria would be a negative number and
our susceptible equilibria would be a number higher than the starting population.

Like in the previous section, we use the equilibria after linearizing the equations,
then examine the eigenvalues. The Jacobian matrix is modeled as follows:

Sn+1
In+1

=
Sn− β

N ·Sn·In+b(N−Sn)

In(1−γ−b)+ β
N ·Sn·In

∂Sn+1
∂Sn

∂Sn+1
∂In

∂In+1
∂Sn

∂In+1
∂In

=
1− β

N ·In−b −
β
N ·Sn

β
N ·In 1−γ−b+ β

N ·Sn

And plugging in our equilibria Ie1 and Se1, we obtain:

1−b −β
0 1−γ−b+β

This gives us eigenvalues λe11 = 1− b and λe12 = 1− γ − b+ β. In order to have
a stable equilibria, we must have values that let both λe11 and λe12 be less than (or
possibly equal to) 1. Again, even though stability at some λ = 1 is not guaranteed,
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we will include it here. Since the birth/death rate for this constant population must
always be 0 ≤ b < 1, we know that λe11 fulfills the needed requirement for stability.
Examining λe12 , we can establish slightly stricter parameters:

|1− γ − b+ β| ≤ 1 −→ 0 ≤ γ + b+ β ≤ 2 −→ −1 ≤ R0 ≤ 2
γ+b

Since the reproduction number R0 must be positive, we can just say that R0 ≤ 2
γ+b

for a stable equilibria. Tiny values for γ and b will allow our value of R0 to be very
large and still produce a stable system. Conversely, for γ and b close to 1, our R0

must be less than one in order to fulfill the requirements for a stable equilibria. In
this situation, γ and b are generally small, which will ultimately result in R0 greater
than one.

Let’s simulate the above model for N = 100, β = 0.3, γ = 0.2, and b = 0.2 with
initial populations S0 = 70 and I0 = 30. Below shows a graph of this simulation over
25 weeks.
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We can see that the number of infected individuals is headed towards an equilib-
rium of zero while the number of susceptible individuals is rising toward N . This cor-
relates with our first set of equilibria found earlier. Here, R0 = 0.3

0.2+0.2
= 0.75 < 1. If

we were to examine other possible equilibria, we would obtain Ie = −.25·.2· 100
0.3
≈ −17

and Se = 100
.75
≈ 133. These values do not make sense in reality, as we cannot have a

negative value for the number of infected individuals nor a number larger than the
population for the number of susceptible individuals.

To more closely examine the equilibria of the model above, we can linearize the
equations. We will also examine all equilibria, even those less than zero. If we
recall, our eigenvalues for the Jacobian matrix for Ie = 0 and Se = N were given
by λe11 = 1 − b and λe12 = 1 − γ − b + β. For this simulation, this corresponds
to λe11 = .8 and λe12 = .9. Both have an absolute value less than one, so we can
conclude that this equilibrium is stable.

Our other set of equilibrium values is for a population that is not disease-free.
These correspond to Ie2 = b · (R0 − 1) · N

β
≈ −17 and Se2 = N

R0
≈ 133. Since

R0 < 1, these equilibria do not translate to a real-life population. However, we can
still examine their stability. To evaluate the stability of these equilibria, we must
also plug these into our Jacobian matrix and then find the eigenvalues. This yields:

1−b·R0 − β
R0

b·(R0−1) 1−γ−b+ β
R0

−→ 0.85 −0.4
−0.5 1 −→ 1.3785 0

0 .4715

Giving us λe21 = 1.3785 and λe22 = .4715. Since one of our eigenvalues is greater
than one, this equilibrium is unstable.

We can simulate another model, this time with an R0 greater than one. Here, we
will keep the starting population at 100 but change β = 0.8, γ = 0.1, and b = 0.1.
The model below simulates these circumstances for 25 weeks.

We can see that with a higher R0 of 4, we do not reach an equilibrium of 0. Our
infected population is tending towards a rate of about 37%. Here, the number of
births and high contact rate ensure that there will always be a population of infected
individuals, and the disease will not die out.
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Let’s examine the two sets of equilibria we found in the last section, Ie1 = 0 with
Se1 = N , and Ie2 = b · (R0 − 1) · N

β
with Se2 = N

R0
. This corresponds to Ie1 = 0 with

Se1 = 100, and Ie2 = 37.5 with Se2 = 25. Both sets of equilibria are plausible as
actual population numbers, so we will see if they are stable or unstable. Let’s use
our previous eigenvalues of λe11 = 1 − b and λe12 = 1− γ − b + β, getting λe11 = .9
and λe12 = 1.6. This tells us that the equilibrium is not stable, and the number of
infected individuals cannot continue to be zero after even a small perturbation in
the system. The model supports this, as the number of infected individuals does not
tend towards zero.

For our second set of equilibria, we will need to revisit the Jacobian matrix and
find our eigenvalues again. Doing this, we get:

1−b·R0 − β
R0

b·(R0−1) 1−γ−b+ β
R0

−→ 0.6 −0.2
0.3 1 −→

4
5+i·

√
2

10 0

0 4
5−i·

√
2

10
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Since we got complex numbers for our eigenvalues, we simply take the magnitude
in order to determine the stability of the equilibria. Therefore, |λe21| = .812404 and
|λe22| = .812404. Since both values are less than one, we can determine that this
equilibrium is stable. Again, this is verified by the graph, as S and I tend toward
constant values.
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