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1 Introduction

Historically, approximating manifolds has been a challenge in discrete systems
analysis due to the absence of analytical solutions. Stable manifolds in particular
are often elusive, especially when inverse iterations diverge quickly or the inverse
cannot be computed explicitly. Krauskopof et. al (1998) and England et. al (2004)
each developed a method of computing one-dimensional stable manifolds that can be
applied to two-dimensional discrete systems. We will summarize the implementation
of these two methods, highlighting the costs and benefits of both.

Krauskopof’s algorithm assumes that the inverse map is known. This method
uses an inverse map to plot successive points in the desired manifold. Because
the inverse is known, Krauskopof’s method can be used to plot either the unstable
manifold using the given function or the stable manifold using the inverse function.
Alternatively, England’s algorithm assumes the inverse map is not known, but still
applies to finding either the stable manifold or the unstable manifold. This method
uses educated guesses for successive points and tests those guesses several times for
each step. We will summarize both these methods in relation to finding the stable
manifold.

While their algorithms differ, two elements of these methods are identical. Both
methods require a “seed” of iteration on the stable manifold. This seed is found by
choosing a point near the saddle point x0 in the direction indicated by the eigenvector
corresponding to the non-dominant eigenvalue. In addition, both methods utilize a
“search circle,” which is established to estimate the distance between points on the
stable manifold. A value ∆k is chosen as this estimate and used as the radius of
the search circle centered at pk, the starting point for each loop of the algorithm.
Both methods also include similar processes for determining the validity of each
approximation. The next sections summarize these methods in more detail.

2 Stable Manifold by Using the Inverse

Plotting the stable manifold of a discrete map when the inverse is known is gen-
erally simpler than plotting without a known inverse. We will examine an algorithm
for plotting the stable manifold using an inverse map, as given by Krauskopof. Note
that while the algorithm is designed to plot the unstable manifold, simply substitut-
ing the inverse function will yield a map of the stable manifold. To avoid confusion,
consider a map f(x, y) is given, and we wish to approximate the stable manifold.
The inverse of f will be defined as f−1(x, y) = g(x, y). To find the stable manifold
of f , we will calculate the unstable manifold of g. The notation g and g−1 will be
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used when summarizing this algorithm procedure.
To begin plotting the unstable manifold of g, locate the saddle point and create

a linear approximation in the direction of the unstable manifold. This linear approx-
imation forms a piecewise mesh. Before summarizing this algorithm, we will assume
there is already a series of points M = {p0, p1, ..., pk−1, pk} built up on the manifold.
Beginning at pk, establish the search circle, C(pk,∆k). Next, locate the pre-image of
pk by evaluating g−1(x, y). If the map is not orientation-preserving, then the second
iteration g−1(g−1(x, y)) must be used. Using the mesh approximation line, move
linearly through the mesh until a segment L is found whose image under g intersects
the search circle. Then, choose a point q on the line segment that maps near the
intersection point, within some tolerance ε from the edge of the search circle. Figure
1 shows a visualization for this algorithm, taken from Krauskopf’s article. Note that
W u
pl(x0) denotes the unstable manifold approximation of g about the saddle point x0

that has already been calculated.

Figure 1: Process for finding pk+1 using the inverse map

Once q has been found, check to see of the point pk+1 = g(q) is an adequate
addition to the manifold by approximating the angle, αk, made by pk−1, pk, and
pk+1. This approximation is given by:

αk =
||p̄− pk−1||
||pk − pk−1||

with p̄ = pk +
pk − pk+1

||pk − pk−1||
(1)

If αk does not fall within a predefined tolerance, then perform the algorithm again
and use ∆k

2
as the radius of the search circle. If αk is acceptable, then pk+1 is accepted

and recorded for for plotting later. The mesh can now be redefined using a linear
approximation in the direction of the non-dominant eigenvalue at pk+1. Repeat this
process until the manifold is adequately built.

2



3 Stable Manifold Without Using the Inverse

This algorithm grows a branch of the stable manifold based on previously com-
puted points in the manifold via a search circle. This search circle algorithm works
differently than the one presented in the above section in that it does not use f−1

for finding the next point in the manifold. Instead, it finds the next point in the
manifold, close to the most recently computed point, which maps to a piece of the
manifold already computed.

The initial point in the stable manifold is the saddle node, denoted p0. The next
point is a δ > 0 distance away from p0 in the direction of the stable eigenvector. The
distance between two points, pi, pi+1, is adjusted according to the angles between
three consecutive line segments.

Consider a branch of a stable manifold which consists of an ordered set of points
at varying distances, M = {p0, p1, . . . , pk−1, pk}. Using the last point, pk, we attempt
to find pk+1 at some ∆k distance away, creating C(pk,∆k). This circle is constructed
to intersect the manifold in two locations. One intersection is on the line segment
[pk−1, pk], which is already known and not of interest. The other intersection is where
pk+1 is located, this is what we are interested in finding.

The image of the circle, f(C(pk,∆k)), will map to a previously computed portion
of the stable manifold and will intersect at two locations. One of those locations
corresponds to the known intersection of C(pk,∆k), the other corresponds to f(pk+1).
The latter is the intersection we wish to find. This crossing will occur at a known
line segment between two consecutive points in the manifold. The line segment will
be assumed to be the one which contained f(pk), and we will call it [pi−1, pi].

The candidate points for pk+1 are selected from an arc of the C(pk,∆k) with
angle αk, Cαk

(pk,∆k). The beginning search point on the arc, pstart, and terminal,
pend, should have images on opposite sides of [pi−1, pi]. This is done by checking the
projection of the points onto the normal of the line. If the images are on the same
side, then αk is increased. This ensures that f(Cαk

(pk,∆k)) will intersect the line
segment.

To ensure that we are getting an acceptable resolution of the manifold, we monitor
αk, which is the angle between pk−1, pk, and pk+1. An approximate αk is given by:

αk = 2 sin− 1

(
||p̄− pk−1||
2||pk − pk−1

)
≈

(
||p̄− pk−1||
2||pk − pk−1

)
,

where p̄ = pk +
||pk − Pk−1||
||pk − pk+1||

(pk − pk+1)
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The angle is now bisected and the point on the arc corresponding to the bisection
is ptry. Again, we look at the image, f(ptry), and check how far away from the line
segment it is. Once it is less than some εB distance away, we accept this point as the
candidate point for pk+1. Figure 2 gives a pictorial representation of this process.

Figure 2: Process for finding pk+1 without using the inverse map

The last step is to check that f(ptry) is on the line segment previously assumed.
To do this, we check that the projection, τ of the point, f(ptry) onto the line segment.
If τ < 0 we move to the previous line segment and run the algorithm again. If τ > 1
we move to the next line segment and run the algorithm again. Otherwise, 0 ≤ τ ≤ 1,
we are on the line segment and ptry is accepted as pk+1 and is added to the manifold.

4 Results

Both methods can be utilized to find either the stable or the unstable manifolds.
A comparison of implementations from method is given in figure 3 below, using the
shear map as a basis for evaluation. Both implementations plot both the stable
and unstable manifolds, and appear to be a visual match. This indicates that the
methods described above are both valid for mapping either manifold type. Although
mapping stable manifolds when the inverse is known is generally less complicated,
often the inverse cannot be found either analytically or approximated numerically,
such as with Newton’s Method. One example of a non-invertible map is the tent map,
as the modulus function is not one-to-one and therefore does not have an inverse.
England’s method can be used to give an accurate picture of the desired manifold in
instances like this.
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Figure 3: Shear map implementations using both methods.
Left: Method with the inverse [2] Right: Method without the inverse [1]

5 Conclusion

The methods presented in this paper have been applied specifically to two-
dimensional maps, which create one-dimensional manifolds. The next logical step
would be to extend the results to three- and four-dimensional maps. The values for
p0 and p1 would be found in the same manner. However, greater attention will need
to be given to building the two-dimensional visualization. One possible solution is to
create the manifold in a similar manner described above, however each point must
be extended into a line orthogonal to the points found to be in the manifold. The
endpoints of the orthogonal lines should be used to create another set of points, as
previously described. It will be interesting to see where the research and applications
for these methods will lead.
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